CA:MG RATIO IN HUMAN HEALTH

Andrea Rosanoff
Center for Magnesium Education & Research
Pahoa, Hawaii USA

2nd International Symposium on Magnesium in Crop Production, Food Quality and Human Health

> November 6, 2014 Sao Paulo, Brazil

CA:MG IN ANIMAL CELL FUNCTION

CELLULAR EFFECTS IN HUMANS OF HIGH CA:MG

Cell Type/Function

Effect

Clinical

Over-contracts cannot relax

Stickiness – prone to clot

constriction/stiffness hypertension

Over-production dyslipidemia

High glucose prodn.

Poor response to insulin

High insulin prodn.

Heart Disease

Blood clots – Heart Attack Stroke

HD Risk Factor

HD Risk Factor

High blood glucose

Insulin Resistance

Hyperinsulinemia

See: Resnick, et al articles, 1993 – 1999 and Seelig & Rosanoff, 2003

Copyright by Center for Magnesium Education & Research, 2014

CA:MG IN HUMAN HEALTH

- * Historical "Do not exceed 2:1 intake of Ca:Mg"
 - + Durlach, 1989
- × 2012 Ca:Mg < 2.68 intake shows less risk of cancer
 - + Dietary Ca:Mg < 2.6 can lower occurrence of colorectal adenoma with polymorphism
 - × Dai et al., 2012
 - + In general, risk of colorectal cancer decreases with rising Mg intakes
 - × Larsson et al., 2005, Folsom & Hong, 2006
 - + especially at low Ca:Mg intake ratios
 - × Dai et al., 2012; Ma et al., 2010

CHANGING CA:MG INTAKE RATIOS IN HUMAN POPULATIONS

Population – year	Ca:Mg Dietary	Ref.
Traditional		
Rural India, underprivileged – 1998	0.50	Kapil, 1998
Bedouin traditional, 2009	0.87	Abu-Saad, 2009
Transitional		
Upper Class Young Chinese – 1941	1.12	Chu et al., 1941
Ceylon Med Students – 1950	1.35	Cullumbine, 1950
*Bedouin transitional, 2009	1.49	Abu-Saad, 2009
Modern Developed		
Japan	1.6 –1.9	Ma et al., 2010
China – 2004 (1997)	1.75	Cai et al., 2004
Canadian adults, 2004	2.63	HealthCanada, 2004
European adults, 2009	2.73	Welch, 2009
Turkish teens, 2008	2.89	Garipagaoglu, 2008
UK adults, 2008/9	3.1	Bates, et al., 2010
USA adults, 2007/8	3.17	Rosanoff, 2010

INFLUENCE OF CA:MG INTAKE RATIO

- x China study, Ca:Mg intake ratio = 1.7
 - + increased mortality from cardiovascular and colorectal cancer diseases
 - × At 320+ mg Mg/day

Dai et al., 2013

- **Solution** With supplements it is 3.6) **USA studies, Ca:Mg intake ratio** = 3.3 (2009-10 USDA NHANES data.
 - + decreased mortality from cardiovascular diseases
 - At increase of dietary Mg of 200 to 375 mg/day
 - * Chiuve 2011, 2013; Zhang 2012; Del Gobbo 2013
 - + <u>decreased</u> mortality from colorectal cancer
 - × At increased Mg intakes of >106 mg/day
 - * Folsom & Hong, 2006

EFFECT OF SOIL CA:MG RATIOS ON YIELD AND PLANT CA:MG IN ALFALFA (WISCONSIN SOILS, 1979)

Soil Ca:Mg*	Yield t/a	Plant Ca:Mg	% Exchange	% Exchange
			sat - Mg	sat - Ca
Theresa silt loam**				
2.28	3.31	2.15	35	34
3.40	3.31	2.36	22	45
4.06	3.40	2.53	19	46
4. 76	3.40	2.87	17	49
5.25	3.50	2.97	16	52
8.44	3.22	3.29	12	62
Plainfield loamy				
and***				
2.64	4.14	2.48	20	32
2.92	4.28	2.70	20	35
3. 48	4.35	3.32	18	38
4.81	4.12	3.35	15	43
7.58	4.30	4.14	13	65
8.13 *Variations in excl	4.35 hangeable Calan	3.64 d Mg achieved by add	15	68 som salt.
		- 3,040 lb/a; Exchange		

***Exchangeable Ca range = 950 – 2,050 lb/a; Exchangeable Mg range = 240 - 390 lb/a.

SUMMARY

x Ca:Mg ratios:

- + Human Diet rising; has health consequences
- + Soil may not alter yield, but may alter crop Ca:Mg; differs with soil type.
- + Crop taken together with overall diet, impacting human health?

× Other mineral ratios that may have human health impact:

- + Zn:Cu
- + Na:K
- + P:Ca and P:Mg poorly studied in human health so far